Maize Small Leaf Spot Classification Based on Improved Deep Convolutional Neural Networks with a Multi-Scale Attention Mechanism

نویسندگان

چکیده

Maize small leaf spot (Bipolaris maydis) is one of the most important diseases maize. The severity disease cannot be accurately identified, cost pesticide application increases every year, and agricultural ecological environment polluted. Therefore, in order to solve this problem, study proposes a novel deep learning network DISE-Net. We designed dilated-inception module instead traditional inception for strengthening performance multi-scale feature extraction, then embedded attention learn importance interchannel relationships input features. In addition, dense connection strategy used model building strengthen channel propagation. paper, we constructed data set maize spot, including 1268 images four grades healthy leaves. Comparative experiments show that DISE-Net with test accuracy 97.12% outperforms classical VGG16 (91.11%), ResNet50 (89.77%), InceptionV3 (90.97%), MobileNetv1 (92.51%), MobileNetv2 (92.17%) DenseNet121 (94.25%). Grad-Cam visualization also shows able pay more key areas making decision. results showed was suitable classification field.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skin Lesion Classification Using Deep Multi-scale Convolutional Neural Networks

Melanoma is a malignant tumour originating from melanocytes cells skin cells responsible for the production of melanin. The American Cancer Society estimates that in the United States alone for 2017, more than 87,000 new melanoma cases will be diagnosed and around 9,300 persons are expected to die[1]. Skin melanoma lesions are very challenging to visually diagnose due to their similarity in vis...

متن کامل

ImageNet Classification with Deep Convolutional Neural Networks

The intended goal of the experiments was to create a deep, convolutional network that uses supervised learning to achieve better (lower) error rates than the rates previously observed, to identify images, on a highly challenging dataset. The parameters used for judging if the CNN is able to recognise the object is given by “Top-1” and “Top-5” predictions made – that is the top prediction made, ...

متن کامل

Scene Classification with Deep Convolutional Neural Networks

The use of massive datasets like ImageNet and the revival of Convolutional Neural Networks (CNNs) for learning deep features has significantly improved the performance of object recognition. However, performance at scene classification has not achieved the same level of success since there is still semantic gap between the deep features and the high-level context. In this project we proposed a ...

متن کامل

Lung Nodule Classification Based on Deep Convolutional Neural Networks

Lung nodule classification is one of the main topics on computer-aided diagnosis (CAD) systems for detecting nodules. Although convolutional neural networks (CNN) have been demonstrated to perform well on many tasks, there are few explorations of their use for classifying lung nodules. In this work, we present a method for classifying lung nodules based on CNNs. Training is performed by balanci...

متن کامل

Time Series Classification Using Multi-Channels Deep Convolutional Neural Networks

Time series (particularly multivariate) classification has drawn a lot of attention in the literature because of its broad applications for different domains, such as health informatics and bioinformatics. Thus, many algorithms have been developed for this task. Among them, nearest neighbor classification (particularly 1-NN) combined with Dynamic Time Warping (DTW) achieves the state of the art...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Agronomy

سال: 2022

ISSN: ['2156-3276', '0065-4663']

DOI: https://doi.org/10.3390/agronomy12040906